The molecular evolution of β-carbonic anhydrase in Flaveria.
نویسنده
چکیده
Limited information exists regarding molecular events that occurred during the evolution of C(4) plants from their C(3) ancestors. The enzyme β-carbonic anhydrase (CA; EC 4.2.1.1), which catalyses the reversible hydration of CO(2), is present in multiple forms in C(3) and C(4) plants, and has given insights into the molecular evolution of the C(4) pathway in the genus Flaveria. cDNAs encoding three distinct isoforms of β-CA, CA1-CA3, have been isolated and examined from Flaveria C(3) and C(4) congeners. Sequence data, expression analyses of CA orthologues, and chloroplast import assays with radiolabelled CA precursor proteins from the C(3) species F. pringlei Gandoger and the C(4) species F. bidentis (L.) Kuntze have shown that both contain chloroplastic and cytosolic forms of the enzyme, and the potential roles of these isoforms are discussed. The data also identified CA3 as the cytosolic isoform important in C(4) photosynthesis and indicate that the C(4) CA3 gene evolved as a result of gene duplication and neofunctionalization, which involved mutations in coding and non-coding regions of the ancestral C(3) CA3 gene. Comparisons of the deduced CA3 amino acid sequences from Flaveria C(3), C(4), and photosynthetic intermediate species showed that all the C(3)-C(4) intermediates investigated and F. brownii, a C(4)-like species, have a C(3)-type CA3, while F. vaginata, another C(4)-like species, contains a C(4)-type CA3. These observations correlate with the photosynthetic physiologies of the intermediates, suggesting that the molecular evolution of C(4) photosynthesis in Flaveria may have resulted from a temporally dependent, stepwise modification of protein-encoding genes and their regulatory elements.
منابع مشابه
Loss of the Transit Peptide and an Increase in Gene Expression of an Ancestral Chloroplastic Carbonic Anhydrase Were Instrumental in the Evolution of the Cytosolic C4 Carbonic Anhydrase in Flaveria 1[C][OA]
C4 photosynthesis has evolved multiple times from ancestral C3 species. Carbonic anhydrase (CA) catalyzes the reversible hydration of CO2 and is involved in both C3 and C4 photosynthesis; however, its roles and the intercellular and intracellular locations of the majority of its activity differ between C3 and C4 plants. To understand the molecular changes underlying the evolution of the C4 path...
متن کاملLoss of the Chloroplast Transit Peptide from an Ancestral C3 Carbonic Anhydrase Is Associated with C4 Evolution in the Grass Genus Neurachne.
Neurachne is the only known grass lineage containing closely related C3, C3-C4 intermediate, and C4 species, making it an ideal taxon with which to study the evolution of C4 photosynthesis in the grasses. To begin dissecting the molecular changes that led to the evolution of C4 photosynthesis in this group, the complementary DNAs encoding four distinct β-carbonic anhydrase (CA) isoforms were ch...
متن کاملpH Dependence Study of the Kinetic Reaction of Bovine Carbonic Anhydrase with 2,2'-Dithiobispyridine in the Absence and Presence of Surfactants
The pH dependence study reveals that the Cys 206 sulphydryl group of bovine carbonicanhydrase in the native form is not exposed. During the reaction of 2,2'-dithiobispyridine (2-DTP) with the enzyme, there was no absorbance change recorded. In the presence ofsurfactants, the pH dependence profiles of the apparent second order rate constants, kapp, forthe reaction of 2-DTP with bovine carbonic a...
متن کاملStudy of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods
Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...
متن کاملGas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach
In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 62 9 شماره
صفحات -
تاریخ انتشار 2011